9.18淑芬(B1)笔记

Stolz定理

\frac{*}{\infty}StolzStolz定理

an+1anbn+1bn=ARcn=anAbncn+1cnbn+1bn=(an+1Abn+1)(anAbn)bn+1bn=an+1anbn+1bnA0故有anbn=cnbn+A故不妨设A=0对任给ϵ>0,一个正整数N1,使得nN1时,有ϵ<aN1+1aN1bN1+1bN1<ϵϵ<anan1bnbn1<ϵ设\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=A\in\mathbb{R} \\ c_n=a_n-Ab_n \\ \frac{c_{n+1}-c_n}{b_{n+1}-b_n}=\frac{(a_{n+1}-Ab_{n+1})-(a_n-Ab_n)}{b_{n+1}-b_n} =\frac{a_{n+1}-a_n}{b_{n+1}-b_n}A \rightarrow 0 \\ 故有 \frac{a_n}{b_n}=\frac{c_n}{b_n}+A \\ 故不妨设A=0 \\ 对任给\epsilon >0,\exist 一个正整数N_1,使得 \\ 当n\leq N_1时,有-\epsilon <\frac{a_{N_1+1}-a_{N_1}}{b_{N_1+1}-b_{N_1}}<\epsilon \\ \cdots \\ -\epsilon < \frac{a_{n}-a_{n-1}}{b_{n}-b_{n-1}}<\epsilon \\

ϵ<anaN1bnbN1<ϵϵ(bnbN1)<anaN1<ϵ(bnbN1)所以存在一个正整数NN1,使得当n>N时,2ϵ<anbn<2ϵ所以limnanbn=0-\epsilon < \frac{a_n-a_{N_1}}{b_n-b_{N_1}}< \epsilon \\ -\epsilon(b_n-b{N_1})<a_n-a_{N_1} <\epsilon(b_n-b_{N_1}) \\ 所以 存在一个正整数N\geq N_1,使得当n >N时,-2\epsilon<\frac{a_n}{b_n}<2\epsilon \\ 所以\lim_{n \to \infty}\frac{a_n}{b_n}=0

A=+对任给M>0,N1,使得an+1anbn+1bn>M则当n>N1,anaN1bnbN1>Manbn>aN1bn+M(1bN1bn)>M=所以,存在一个正整数N>N1,使得当n>Nanbn>M2所以limnanbn=+A=+\infty 对任给M>0, \exist N_1,使得\frac{a_{n+1}-a_n}{b_{n+1}-b_n}>M \\ 则当n>N_1时, 有 \frac{a_{n}-a_{N_1}}{b_{n}-b_{N_1}}>M \\ \frac{a_n}{b_n}>\frac{a_{N_1}}{b_{n}}+M(1-\frac{b_{N_1}}{b_n})>M \\=- 所以,存在一个正整数N>N_1,使得当n>N时 \frac{a_n}{b_n}>\frac{M}{2} \\ 所以\lim_{n \to \infty}\frac{a_n}{b_n}=+\infty

00\frac00StolzStolz定理

{bn}严格减ϵ<anan+1bnbn+1<ϵm>n>N,有:ϵ<anambnbm<ϵ固定n,令m+后,ϵanbnϵ\{b_n\}严格减 -\epsilon <\frac{a_{n}-a_{n+1}}{b_{n}-b_{n+1}}<\epsilon \\ 则m>n>N时,有:-\epsilon<\frac{a_{n}-a_{m}}{b_{n}-b_{m}}<\epsilon \\ 固定n,令m\to+\infty 后,-\epsilon\leq\frac{a_n}{b_n}\leq\epsilon