9月18日数学分析(B1)作业

P27 第17题(2)

ϵR+,NN,使得n>N,有an+pan=13n+1+1+13n+2+1++13n+p+1<13n+1+13n+2++13p=13n+113p+1113=32(13n+113p+1)<123n<ϵ对于任意p成立\forall \epsilon \in \mathbb{R}^+ , \exists N\in\mathbb{N} , 使得 \forall n>N,有\\ \begin{aligned} |a_{n+p}-a_n|=\frac{1}{3^{n+1}+1}+\frac{1}{3^{n+2}+1}+ \cdots +\frac{1}{3^{n+p}+1} &< \frac{1}{3^{n+1}}+\frac{1}{3^{n+2}}+ \cdots +\frac{1}{3^p} \\ &=\frac{\frac{1}{3^{n+1}}-\frac{1}{3^{p+1}}}{1-\frac{1}{3}} \\ &=\frac{3}{2}(\frac{1}{3^{n+1}}-\frac{1}{3^{p+1}}) \\ &<\frac{1}{2\cdot 3^n} <\epsilon 对于任意p成立 \\ \end{aligned} \\

解得n>log32ϵn>-\log_3{2\epsilon}
不妨设ϵ<1,设N=[log32ϵ]+1\epsilon<1,设N=[-\log_3{2\epsilon}]+1

此时当n>N时,对任意pNan+pan<ϵn>N时,对任意p\in\mathbb{N}有|a_{n+p}-a_{n}|<\epsilon\\
{an}\{a_n\}收敛

P27 第17题(4)

ϵR+,NN,使得n>N,有     an+pan=cos(n+1)(n+1)(n+2)+cos(n+2)(n+2)(n+3)++cos(n+p)(n+p)(n+p+1)<1(n+1)(n+2)+1(n+2)(n+3)++1(n+p)(n+p+1)=1n+11n+p+1<1n+1<ϵ 对于任意p成立\forall \epsilon \in \mathbb{R}^+ , \exists N\in\mathbb{N} , 使得 \forall n>N,有\\ \begin{aligned} &\ \ \ \ \ \left\vert a_{n+p}-a_n \right\vert \\&=\left\vert\frac{\cos(n+1)}{(n+1)(n+2)}+\frac{\cos(n+2)}{(n+2)(n+3)}+ \cdots +\frac{\cos(n+p)}{(n+p)(n+p+1)}\right\vert \\ &< \left\vert\frac{1}{(n+1)(n+2)}+\frac{1}{(n+2)(n+3)}+ \cdots +\frac{1}{(n+p)(n+p+1)}\right\vert\\ &=\frac{1}{n+1}-\frac{1}{n+p+1} \\ &<\frac{1}{n+1} <\epsilon \ 对于任意p成立 \\ \end{aligned}

解得n>1ϵ1n>\frac{1}{\epsilon}-1 \\
不妨设ϵ<1,设N=[1ϵ]+1\epsilon<1,设N=[\frac{1}{\epsilon}]+1 \\
此时当n>N时,对任意pNan+pan<ϵn>N时,对任意p\in\mathbb{N}有\left\vert a_{n+p}-a_{n}\right\vert<\epsilon \\
{an}\{a_n\}收敛

P27 第23题

limnan=M>0,NN,使得当n>N时,有an>Mbbnb>0,故有anbn>M,即得limnanbn=\lim_{n \to \infty}a_n=\infty \Rightarrow \forall M>0, \exist N\in \mathbb{N}, 使得当n>N时,有|a_n|>\frac{M}{b} \\ 又|b_n|\ge b>0,故有|a_nb_n|>M,即得\lim_{n \to \infty}a_nb_n=\infty

P27 第24题

an=n!n先证{an}单调递增:{an}单调递增(n!)1n<((n+1)!)1n+1n!<(n+1)n 显然成立,an单调递增;再证{an}无界:取{an}的一个子列{a2n1}a2n1=(123(2n1))12n1>(12244442n12n12n1)12n1=212+24+38++(n1)2n12n1=2(n2)2n+22n1>2n2由于limn2n2=+,可得{a2n1}无界且趋于+从而有{an}无界;{an}单调递增,从而有limnan=+综上,n!n无界且趋于无穷大。(2)假设limnnsinnπ2=M>0,NN,使得当n>N时,有an>M成立N2>N2N2,此时an=0>M,矛盾;an=nsinnπ2不趋于无穷大;M>0,n=2M+1,此时有an=2M+1>Mn>0使得an>M综上,nsinnπ2无界且不趋于无穷大。\begin{aligned} &设a_n=\sqrt[n]{n!}; \\ &先证\{a_n\}单调递增: \\ &\{a_n\}单调递增 \Leftrightarrow {(n!)}^\frac{1}{n}<{((n+1)!)}^\frac{1}{n+1} \Leftrightarrow n!<(n+1)^n\ 显然成立, \\ &故a_n单调递增;\\ &再证\{a_n\}无界:取\{a_n\}的一个子列\{a_{2^n-1}\}\\ &a_{2^n-1}=(1\cdot 2\cdot 3\cdot \cdots\cdot (2^n-1))^\frac{1}{2^n-1}\\ &>(1\cdot 2\cdot 2\cdot 4\cdot 4\cdot 4\cdot 4\cdot \cdots\cdot 2^{n-1}\cdot 2^{n-1}\cdot \cdots\cdot 2^{n-1})^\frac{1}{2^n-1}\\ &=2^{\frac{1\cdot 2+2\cdot 4+3\cdot 8+ \cdots +(n-1)\cdot 2^{n-1}}{2^n-1}}\\ &=2^{\frac{(n-2)2^n+2}{2^n-1}}>2^{n-2}\\ &由于\lim_{n \to \infty}2^{n-2}=+\infty,可得\{a_{2^n-1}\}无界且趋于+\infty\\ &从而有\{a_n\}无界;\\ &又\{a_n\}单调递增,从而有\lim_{n \to \infty}a_n=+\infty \\ &综上,\sqrt[n]{n!}无界且趋于无穷大。\\ &(2) 假设 \lim_{n \to \infty}n\sin\frac{n\pi}{2}=\infty \\ &\Rightarrow\forall M>0 , \exist N\in \mathbb{N},使得当n>N时,有|a_n|>M成立 \\ &取N_2>N且2 | N_2,此时|a_n|=0>M,矛盾; \\ &故 a_n=n\sin \frac{n\pi}{2} 不趋于无穷大; \\ &又\forall M>0, 取n=2M+1,此时有a_n=2M+1>M \\ &即\exists n>0使得 |a_n|>M; \\ &综上,n\sin\frac{n\pi}{2}无界且不趋于无穷大。\\ \end{aligned}

P27 第25题

      an+1=an+1anan+12=an2+1an2+2>an2+2{an}单调递增且an+12>a12+2n=2n+1limn2n+1=+an+(n),得证\begin{aligned} &\ \ \ \ \ \ a_{n+1}=a_n+\frac{1}{a_n} \\ &\Rightarrow a_{n+1}^2=a_n^2+\frac{1}{a_n^2}+2>a_n^2+2 \\ &\Rightarrow \{a_n\}单调递增且a_{n+1}^2>a_1^2+2n=2n+1 \\ 又\lim_{n \to \infty}\sqrt{2n+1}=+\infty&\Rightarrow a_n\rightarrow+\infty(n\rightarrow \infty),得证 \end{aligned}